The radius of a right circular cylinder increases at the rate of 0.1 cm/min, and the height decreases at the rate of 0.2 cm/min. The rate of change of the volume of the cylinder, in cm³/min, when the radius is 2 cm and the height is 3 cm is

$$a. -2p$$

b.
$$-\frac{8\pi}{5}$$

c.
$$-\frac{3\pi}{5}$$

$$\mathbf{d.} \ \frac{2\pi}{5}$$

d. Given $V = \pi r^2 h$.

Differentiating both sides, we get

$$\frac{dV}{dt} = \pi \left(r^2 \frac{dh}{dt} + 2r \frac{dr}{dt} h \right) = \pi r \left(r \frac{dh}{dt} + 2h \frac{dr}{dt} \right)$$

$$\frac{dr}{dt} = \frac{1}{10}$$
 and $\frac{dh}{dt} = -\frac{2}{10}$

$$\frac{dV}{dt} = \pi r \left(r \left(-\frac{2}{10} \right) + 2h \left(\frac{1}{10} \right) \right) = \frac{\pi r}{5} (-r + h)$$

Thus, when r = 2 and h = 3,

$$\frac{dV}{dt} = \frac{\pi(2)}{5}(-2+3) = \frac{2\pi}{5}$$